CLARKSON COLLEGE OF TECHNOLOGY . .

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

A MICROPROCESSOR BASED NETWORK:

The Clarkson Loop

‘A Thesis
by

RUSSELL NEIL NELSON

Submitted in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE

(Electrical and Computer Engineering)

October 1980

Accepted by the Graduate School

Date Dean

Abstract : ‘

This. thesis details the implementation of a. distributed
microcomputer system for the IEEE S-100 bus. The system consists of

hardware and software whose function 1s to transmit and receive

messages. The design of the interface hardware, the software driver,
and the protocol are discussed. An example of usage of the system is

given.

Acknowledgements

First, let me ‘give special recognition to my thesis advisor, Dr.
David Bray, and my good friend, Paul Austin, without whom I would not
hévg attended graduate school in the first place. I am very grateful to
the members of my thesis committee, Dr. Susan Conry, and Dr. Mohammed
Arozullah, for the time that they épent reviewing this document. I
would also like to thank my parents, Russell and Gladys Nelson for their
undying’ support.

I thank the myriad unnaﬁed faculty, graduaté students, and wundergrads
who supported me with their friendship and interest in my thesis. Many
thanks also to the good, kind, wonderful person who:wrote the word pro-

cessor used to print this thesis.

1.1
2.1

3.1

4.1
4.2
5.1
5.2
5.3
5.4
6.1

7.1

Table of Contents

Introduction
Network Architecture

Hardware Requirements

. Functional Description

Software Requirements

North Star Operating System
Protocol

User Interface

Sending Messages

Receiving Messages

Example of Clarkson Loop Usage

Conclusions

References

Appendix A - Interface Schematic

Appendix B - I/0 Interface routines

Appendix C - Loop Handlers

Appendix D

~LOGDISK

ii

10

10

16
17
19
20
21
23

27

30

32
33
39
44
55

List of Figures

2.1 Bus and Loop

2.2 Clarkson Loop

3.1 Block Diagram of Interface
5.1 Message Format

5.2 Reception State Diagram

6.1 Message Flow

P

iii

11
19
24

- 28

3.1 Port Addresses
3.2 Interrﬁpt Masks

6.1 Message Contents

List of Tables

iv

12

14 -

29

1.1 Introduction

This thesis describes the design and implementation of a
microcomputer network consisting of both hardware and software. The
purpose of the network is to allow parallel processing.and sharing of
computer resoﬁrces by using an inexpensive, simple, and expandable com—~
munication system.

The software developed includes an interrupt-driven version of the
North Star Operating System, routines to send and receive messages, and
an example‘ program which exercises the capabilities of the operating
system. The implemented hardware consists of an interface board which
meets the design criteria.

The design criteria ﬁsed in developing this’system are:

1) The network itself must be low cost because the microcomputers of the
network are themselves inexpensive. The interfaces between them must be
proportional in cost, or the system will not be economical.

2) The network must be incrementally expandable so that more processors
vcan be added withouf reconfiguring the network. |

3) The software to handle network comﬁunication must not require large
amoﬁnts of memory or computing time, otherwise the network wili in-
terfere with the normal operations of the processor;

4) Communicaﬁions between any two processors must be independent of any
other processors because some network processors may not be operating.

There are many ways to interconnect computers, only some 6f which
are suitable in the context of microcomputers; To satisfy the re-
quirement fhat the network be independent of any single computer, there
mﬁst be a direct link between any two computers, with no intervening
computers. This requirement eliminates many ipterbonnection schemes.

Among the exceptions are the fully connected network, the bus, and the

1.1 Iﬁtroduction

loop. " The fully connected network can be removed from further con-
sideration because the interface to comnect each computér to all of} the
others is expensive.

The bus has been successful in its past usage, and several
standards have been set for buses: CAMAC, IEEE-488, and MIL-STD-1553A
[Weitzman 19801]. None of the standards are useful to qé because their
interfaces are too complicated, and the data transfer protocols are too
- deeply enmeshed in the buses application. The advantage of using a bus
in our application is that any two.processors can communicate over a bus
provided that control can be arbitrated so that no more than one pro-
cessor can transmit data at aﬁy one time.

Three types of loop architecture have achieved popularity: the
Newhall type, Pierce type, and Delay Insertion type. These loops are
distinguished by the way théy control the‘flow of data from mnode to
node. Loop architecﬁures are advantageous because control is easy to
arbitrate, and loops are easy to expand.

This thesis describes the design and implementation of the Clarkson
Loop, a loop which can be considered an extension éf the Newhall loop.
Its merits are discussed in the first chapter.

Chapter Two develops the rationale behind the‘ choice of network
architectures. The alternatives are considered, and the ones which do
not meet our requirements are eliminated. The actual architecture is
explained in detail, and similarities are drawn between a loop and a
bus.

Chaéter Three describes the interface between each -processor and
the loop, and gives reasons why a special interface is needeﬂ. A block
diagram of the interfacé is shown and explained. The operation 6f each
of the,blocks is given in detail.

Chapter Four ' sets forth the software requirements. The degree of

1.1 Introduction

support required from the existing operéting system is also described.
—~ Chapter Five describes the data transfer protocol, the operation of
the low level operating system software, and the user interface.
In chapter Six an example of a loop application is given: a disk
drive simulator whih allows one comﬁuter to ﬁse another”s disk drive as

" through the- drive were the computer”s own.

2.1 Network Architecture

There are many ways to interconnect computers, only some of which
meet the conmstraints of our application. For the reasons given. in the
introduction, the interprocessor inferface must have as its first
criterion low cost because fhe microcomputers themselves are in-
expensive. A second criterion should be ease of expansion, and a thi:d
should be simplicity of interconnection interface.

For the purposes of this discussion, we shall consider an in-
terconnection of processers to be represented by a graph. Each pro-
cessor is a node of the graph and each interconnecting communication

. link is an arc. The terms processor and node are used synonymously.

The most obvious and versatile of interconnections is the fully
interconnected network. In such a network, every processor is connected
to every other processor with a seperate link for each. The problem
with this scheme is that as the number of nodes in the network goes up,
the interconnection cost goes up ae n squared, where n is the number of
pfocessors. Each new processor adds n new interfaces, so the number of
arcs in a fully interconnected network is of order n2. Therefore, the
fuliy interconnected network does not meet any of our three re-
quirements.

A method similar to fully interconnected is the partially in-
terconnected ﬁethod, in which at least twe arcs exist between eacb and
every node of the network. For the same reasons as the fully in-
terconnected network, the partially interconnected network is not suit-
able. The partially interconnected network also introduces the problem
of routing a message. Seldom is there a direct path between each pair

of computers, so a message usually must be sent to at least one in-

termediate node. This implies that each computer must have a descrip-

2.1 Network Architecture

tion of the network graph in order to send messages to their proper des-

tination.

The next network to be considered is the star, a network in which .

each node 1is only connected to one common node, called the central

node. Although this architecture is very popular, there are several re-
asons why is mnot suitable for our purposes. First, each time the
network is expanded, an additional interface for the central node must
be purchased. Second, the central node must be capable of switdhing the
messages from one node.to anothe;. This means that the central node

must have enough processing power to interpret the destinations for

messages and redirect them to these destinations. The central node must

therefore be "more powerful" then the other processors. This is‘not in-
tuitively appealing. Third, the processor‘must be able to handle each
message as it comes in.. If too many messageslarrive at once, the pro-
cessor can become saturated. This problem was encountered by Downef
[Downer, 19801]. Some of the processing can be relegated to external
hardware, however, this increases the cost. | |

The only types of interconnections meeting our criteria lie in the
various forms of- the bus, and the loop, as will be shown. A bus is
characterized by a set of nodes each connected by a single arc to anoth-
er set of special nodes, each of which is connected to each other. The
latter type of node is not a processing node, but simply connects each
entering arc together. The loop is characterized by a graph in which
each node is connected to only two others, so that the arcs of the graph
form a cycle. Both the bus and loop networks are shown in Figure 2.1 (a
node which is not a processor is shown as a circle with an X in the

center).

2.1 Network Architecture

Figure 2.1 - Bus and Loop

In the bus, information flows from a single transmitter through the
special nodes to all other receiveré immediately. In the loop, the ‘in—
formation is transmitﬁed from node to node, with each node deciding in-
dependently whether or not to transmit the information on to the next
node.

One characteristic of the bus architecture which makes it
successful is its simplicity.‘ All that is needed is a set of wires, an
interface in each node which can listen, and somgtimes transmit on the
bus, and a protocol to control which processor is‘ailowed to transmit.
We would like to capture that simplicity.

The most well known of the loops include thelPierce, Newhall, and
Distributed Loop Computer Network (DLCN). In both the Pierce [Jafari
1978] and the Newhall [Farmer 1969] loops, control is determined by the
location of a token, which is usually a special character, but may be as
simple as a lqgic level. When the loop is iﬁitialized, one of the pro-
cessors is initialized tovhave the token. The loop handiing software
never creates another token, so there is never more than one token in
the loop.

Messages are of fixed length in the Pierce loop, while the Newhall

2.1 Network Architecture

and DLCN loops.allow variable length messages. In order to give the us-
er as much flexibility as possible, the length of the messages should be
variable. This rules out the Pierce loop.

The DLCN [Liu 1977] uses a technique known as delay insertion.
When an interface wishes to tramsmit, it waits for the end of the
current message. The interface then transmits its message; If a
message arrives during the transmi£ time, it is buffered, and passed on
after the current message. Therefore, any number of messages may be in
transit at once. .The interface uses a bit slice processor and costs
about five hundred dollars. We feel that this is too expensive for
microprocessor applicationé. Of course, it is possible to implement the
DLCN wusing the microprocessor, rather than a dedicated processor. The
reasoﬁ we do not desire to do this is that the - loop would demand too
much " attention from the processor. This is contrary to our goals,
therefore the DLCN is not usable.

The Newhall loop allows variable length messages, but only - allows
one message on the loop at a time. The processor which puts that
meésage on thelloop has posession of the token. When the processor is
finished sending, it passes on the token to the next processor on the
loop. Each processor receives the message in turn and determines if the
message 1is addressed to itself. If so, the message is removed from the
loop, and if not, the message is sent oﬁ to the next processor.

The Newhall loop meets most of our‘requirements, The loop is in-
crementally expandable, and can be made indepeﬁdent of any single pro-

cessor. The loop selected for our application is a Newhall 1loop

augmented by an additional control loop, as shown in Figure 2.2.

2.1 Network Architecture -

Serial
Control

Figure 2,2 - €larkson Loop

In the Clarkson loop there are in effect two loops. One line
carries serial data, and the other arbitrates control. The serial data
line is similar to a bus in that its information is received at all
nodes at once. The control line has properties generally ascribed to a
loop in - that the token is sent from node to node,‘with each node de-
termining when the token is sent on.

The serial data 1iﬁe is used to transmit characters serially. When
a processor gains control of theiloop, the serial data line is broken at
that node only. The rest of the processors leave the liﬁe closed, so
that characters that are transmitted are received immediately by all
processors.

Once the transmission has been completed, the ldop is free. This
is becausé‘the‘time a message spends in transit is nearly zero. The re-
ceiving processor caﬁ then send an acknowledge character indicating that

the message was received properly.

The control 1line is used to transmit a token from one node to
another. The processor which currently holds the token is the processor
in control of the loop. A processor may transmit a message only when it

is in control of the loop. When a processor is finished transmitting,

2.1 Network Architecture

it sends the token on to the next processor in the loop.

e The details of hardware implementation are given in the next chapt-

er.

3.1 Hardware Requirements

The Clarkson Loop is independent of any single microprocessor.
This independence is made possible by the use of a special interface
board. The interface is designed to be transparent to the loop if " the
interface does not have power applied or if the microprocessor is not
ready to service the interface. The requirements of this‘ interface
board are given next.)

In our software architecture we shall consider the normal activity
of the host computer to be called the background job. The purpose of
the operating system is to allow the user”’s backgiound job to execute
while allowing other users to access his peripherals [Brinch-Hansen
19731. ‘To avoid disrupting the host computer’s activities, the transfer
of data to and from the interface must be done using the interrupt
system rather than a software sense loop, since the background job would
stop running if the processor had to wait forl characters in a sense
loop. Tolensure that the interface will function on a computer without
an interrupt generator, interrupt generation circuitry is included on
the Clarkson Loop interface board.

A special interrupt must be caused when a character which marks the
beginning of message is received. This ensures that a processor can re-
cognize the beginning of a message. Software must be written which com-
pares the address in the destination field of the message with the
address of the processor. This function could be performed in hardware,
but this would unnecessarily complicate the board. If a message is not
addressed to the host, thevprocessbr should not be bothered by a message
generated interrupt. This is.in keeping with the goal of minimum in-
terruption of the host processor. An interrupt mask is desirable to

eliminate unnecessary interrupts.

10

3.1 Hardware Requirements

3.2 Functional Description

The interface circuit consists of several major sections. These
are, in the order in which they will be explained: the address decpder,
the UART, the baud rate generator, the message detector, the token
handler, the interrupt gemerator, and the cﬁrrent loop drivers. A block
diagram of the interface is given in Figure 3.1 and ifs schematic - is

given in Appendix A.

$-188 Bus
A A
Baud UART Serial
Rate Loop
Generator Handler
Address Message
Decoder Detector
Interrupt L— | —sf Token Token
Generator Handler Loop |
Driver

Figure 3.1 - Block Diagram of Interfacé
Address Decoder
‘The 8080A has an I/0 address space which uses eight bits, The in-
terface board responds to four of the 256 possible addresses. Address
bits A0 and Al (the two low order address bits) are sent to the decoder
to determine which of the four ports are being addressed. The rest of
the address bits, A2 through A7, are compared to the contents of a DIP

switch using six exclusive-or .gates. The outputs of the exclusive-or

11

3.2 Functional Description ' ' ///////

gates form the board addressed signal. To ensure that the board is onlyv
activated on input and.output instructions of the 8080A, the board
a&dressed signal is ANDed with SIN/ and SOUT/ to form the board enable
signal (notation: SIN/ denotes the complement of SIN). One of the two
signals SIN or SOUT is brought higﬁ by the processor whenever an input
or an output instruction takes place, respectively.

The board enable signal, the précessor write - signal (PWR-L), Vand
the processor reéad signal (PDBIN) aré sent to the three to eight decod-
er. FA pulse is formed when either PWR-L or PDBIN become true. These
two signals Aare shorter than other signals sent to the decoder, hence
they determine the length of the pulse.

The output of the address decoder is ab set of eight active 1low
pulses. Port zero will cause the UARI to be enabled, and port ome will
cause the status port to be read or the interrupt mask to be written.
Ports two and threevdo ﬁot use the data bus; fhey are control signals.
Simply reading or writing to these two ports will set or clear the token
handler flip flops, called Loop Available and Loop Desired. The port

assignments are shown in Table 3.1

Port | Input [Qutput
0 ! UART status | interrupt mask
1 | .character in | character out
2 | clear LA l set LD
3] set LA | clear LD

Table 3.1 = Port Addresses

The UART section consists of one integrated circuit, which is com-
plicated enough to warrant its own description. The Universal
Asynchronous Receiver and Transmitter, UART, is a five volt version of

the industry standard 1602 [Osbourne 1977]. The UART is configured to

12.

3.2 Functional Description

send and receive eight bits of data, with even parity, and one stop
bit. The parallel input data to the UART is received from the 8080A bus-
throﬁgh buffers. The parallel output data is sent to the 8080A bus
through Triétate buffers. The input serial data and output serial data
go to the loop sigﬁal drivers which implement a 20 milliampere current
loop. The UARf has several status lines, which can be read by the com-

puter using port zero. The receive and transmit clocks, which must be

set at sixteen times the desired béud rate, come from the baud rate
generator circuit which is described below.
Baud Rate Generator

- The baud rate generator is a simplé circuit, comsisting only of a
counter chip, dividing down the system clock (2 Mhz) by thirteen. This
generates sixteen times the baud rate of 9600. Wev chose to wuse this
transmission speed because it is slow enough to eliminate errors. The

UART can operate at up to 300 kilobaud.

Message Detector

The message detector is a set of exclusive-or gates which compare
the output of the UART to the contents of a DIP switch. The output of
this circuit goes high when a beginning of message character (BOM),
which is encoded into a DIP switch, is received. This output is sent to
the status port, and is also sent to the interrupt generator. To ensure
that the interrupt will no longer be requested once it hés been
acknowledged, the interrupt request is ANDed with the character received
bit from the UART.

Token Handler

The token handler determines what happens to the token once it is
received. The token is a one hundred microsecond 1long pulse which
travels from computer to computer. There are two flip flops which con~

trol the token pulse”s travel. These .two flip flops are called LOOP

13

Pl

3.2 Functional Description

'DESIRED and LOOP AVAILABLE. They can be directly set and cleared using

ports two and three. If they are both clear, the token pulse will
travel on to the next computer immediately. If LOOP DESIRED is set; the
token pulse”s arrival sets LOOP AVAILABLE, and fhe token pulse is held.
When they are both set, an interrupt is generated. The interrupt handl-
er will clear LOOP DESIRED to reset the interrupt. The token pulse (and
control of the loop) will remain until LOOP AVAILABLE is cleared.
Interrupt Handler

The interrupt generator 1is responsible for raising the 8080A in-
terrupt line énd placing the proper restart instruction on the 8080A bus
when the interrupt is acknowledged. Four interrupts are generated, with
four more reserved for future expansion. These are, from zero to threé,
beginning of message (BOM), loop available (LPA), characfer available
(RDA), and transmitter .buffer empty (TBE). Interrupt zero is . the
highest priority, and interrupt three is the lowest priority.

A mask 1is available which can disable interrupts of a given
priority and lower. A mask of zero will disable all interrupts, a mask
of ome will allow interrupt zero and no other, etc. This‘mask can be
set by an output to port one. A table giving~thé interrupts allowed for

each particular mask is in Table 3.2

Mask] Interrupts allowed

0 | none

1 | 0 (BOM)

2 ! 0 (BoM), 1 (LPA)

3 [0 (BOM), 1 (LPA), 2 (RDA)

4 I 0 (BoM), 1 (LPA), 2 (RDA), 3 (TBE)

Table 3.2 - Interrupt Masks

The interface board must be initialized at power up. Both of the

token control flip flops are reset. If operation with the loop is not

,14

3.2 Functional Description

desired, the interrupt mask can be set to zero, which will turn off all
interrupts. If operation with the loop is to be allowed, the interrupt
mask is set to one. This allows only beginning of messages to be re-
ceived.

The next chapter describes the software requirements.

15

N
\

i

\

4.1 Software Requirements

A message consists ofbtwo parts, the header, and the Dbody. The
header is used to convey information about the body of the message, such
as its destination and 1eng;h. The body of the message 1is the ngﬁgzh‘
information which is transferred. A string comsists of any number of
bytes concatenated together. These bytes are often ASCII characters, in
which case a string is termed text.

Each computer is identified by a unique number which is programmed
into its read only memory. This prevents having to re-identify each
computer whenever it is powered up. This number is termed the processor
address.

The receipt Qf a message is acknowledged by the receiver sending a
character, any character, back to the transmitting processor. If the
message is not received correctly, the character is not transmitted, and
the transmitting processor knows that the message was not received.
When a message is to be sent to. all computers at once, a ‘proceSSOr
address of zero is used and no acknowledge is expected. This operation
is termed broadcasting.

One basic design criterion for the software was that it should be
capable of sending and receiving variable length messages. Also, thg
bytes of the string may take on any value from zero to 255. Variable
length messages are desirable begause théy allow the most flexibility
for the user. Additionally, such messages do not have to be split into
blocks to fit into a fixed size, thus saving operating system software.

There are several methods of delimiting a string commonly in use.
The method most often used for text is to group it into a set of lines,
eéch ending in the ASCII carriage return symbol. This method is not

appropriate in our situation because a message may contain a data byte

- 16

\ . /// \
4.1 Software Requirements

whose 'value 1is the ASCII carriage return. Unfortunately, the problem

cannot be solved by choosing another character to delimit the string,

because any character may appear in binary data strings.

Another string delimiting method involves maintaining a count of
bytes contained in the string. The‘count is then transmitted along with
the string itself. This is the method implemented in the Clarkson Loop,
because it is the most versatile.

Recall that in Chapter Two, when the hardware was discussed, a’
message detector circuit was introduced. The purpose of this circuit is
to generate an interrupt when an ASCIT STX (02 Hei), which we call BOM,
is received. This creates a problem when binary data is transmitted.
If the vélue 02 Hex is transmitted as a byte of a string, the receiver
interface will generate a BOM interrupt. This BOM interrupt will cause
an error since it is not the beginﬁing of a message.

There is a simple solution for this problem. Whenever a 02 Hex is
to be sent as part of a string?>two characters are sent in its pléce: an
ESC (1B Hex) and a capital B (42 Hex). When an ESC is to be trans-
mitted, two characters are sent: an ESC, and a [(5B Hex). The receiver
rdutine can then detect when an ESC arrives and check the next character
to determine the message’s confent. The binary data can then be re-

covered.
4.2 North Star Operating System

The computers which are to be used in this application are $-100

bus computers: IMSAI 80807s, each with a North Star floppy disk system.
The North Star Operating System (DOS) is a minidisk based operating
system. In this operating system, routines are included to create and-

modify a disk directory and read and write files or "arbitrary sectors.

17

4.2 North Star Operating System

All parameteré to these routines are passed through the 8080A re-
gisters;

It has already been shown that the interrupts must be enabled for
the distributed network to function. However, the North Star operating
system does not normally support interrupts. The reason for \this (as_
far ~as DOS is concerned) is that interrupts must be turned off during
disk access.because there is not enough time to acknowledge them.

The North Star operating system used for the Clarkson Loop has been

‘modified to turn the interrupts off and on again at the proper times.
To create an interrupt driven North Star operating system, the original

DOS supplied by North Star Computers was disassembled. Imstructions to

disable and enable interrupts were then placed at the proper points and
DOS was reassembled.
Included in DOS is an empty area of memory in which the user places

terminal I/O routines. 1In this area (which was expanded when DOS was

reassembled) the interrupt driven I/0 routines were placed. Not only

does this provide the necessary interrupt handling but it also allows
the user to enter text even while the loop is being serviced.

In addition to the I/0 routines, the loop driver routines
(described below)‘are included as part of DOS. To ensure that both DOS,

the terminal 1I/0, and the loop drivers are all loaded at the same time

 and at the proper locations, they are all assembled into the same object

file. When a loop computer is initially powered up the augmented in-—

terrupt driven DOS 1is loaded into memory.' Thus the 1loop driving

routines are available without additional action.

A 1listing of the DOS interrﬁpt driven I/0 software is given in

Appendix B.

18

5.1 Protocol

The data transfer protocol has deliberately been kept as simple as
possible fo allow the user flexibility in his own design. Information
is sent in messages of variable length, up to 216 bytes.

A header usually must contain more than the destination address,
and the ﬁessage length. For generélity, information to differentiate
between message types must also be included in the header part of the
message. This can be done by the user, but it is easier for the operat-
ing system to provide this service. Therefore, a Clarkson Loop message
header also contains a command byte which differentiates between message
types.

In order to process messages with different command bytes

differently, each command byte has a buffer and message processor

associated with it. As a message arrives, it is stored in the buffer

for that command byte. When the message is complete, the proper message

processor is called to dispose of the message.

The message format is shown in Figure 5.1, in this figure, DEST de-
notes the destination byte, CMD indicates the command byte, Len low
gives the least significant byte of the length, and Len high gives the

most significant byte of the length.

| BOM | DEST | CMD | Len low | Len high | Data ... |

Figure 5.1 - Message Format

The message length 1is a two byte number stored in standard 8080A
low-high fashion [INTEL 1977]. The command byte”s value may be any byte

value. These desired values are defined at the time the loop drivers

5.1 Protocol

are assembled. The currently defined values are zero through sevén.

5.2 User Interface

There are two user callable routines associated with Clarkson Loop

use. They are GRAB and ADDR, which are used to transmit and receive

messages respectively. These routines, along with the different in-

terrupt handlers, coﬁprise the loop driver software.

Routine: GRAB
Address: 29E2H

Entry: B register = command byte

|

DE register = address of SEND

HL register = address of DONE

Exit: No special conditions

GRAB is used to send a message. Operation of the two routines SEND

and DONE are dependent upon the user”s application. They are written by

the user, and the minimum function that they must perform is to return

the values indicated.

Routine: SEND

Address: determined by user

Entry: No special conditions

Exit: HL register = address of message

SEND is called when the operating system 1is ready

message. SEND merely returns the address of the message.

Routine: DONE

Address: determined by user

20

to

send the

5.2 User Interface

Entry: B register = Boolean value

Exit: HL register = address of message

DONE 1is called when the message has been sent. The B register in-
dicates whether or not the messagé was acknowledged by the receiver. ‘ A
Boolean wvariable is true if it is not zero, and false if it is zero.
DONE should be written(to retransmit the message 1if it was not

acknowledged.

Routine: ADDR
Address: 29E5H

Entry: B register = command byte

DE register = address of the receive buffer.

HL register = address of RECV
Exit: No special conditions
ADDR defines the receive buffer and message processor for the

-specified command byte. The routine RECV must be written by the user.

Routine: RECV
Address: determined by user
Entry: HL register = address of message received
Exit: No special conditions
RECV must dispose of the message before it exits because the
message may bé written over when RECV exits. The operating system pre-~

vents the reception of another message until RECV returns.
5.3 Sending Messages

The GRAB routine is the only sending routine which is explicitly

called by the user. It causes an LPA interrupt to occur. The LPA in-

21

5.3 Sending Messages

terrupt handler causes a TBE interrupt. The TBE interrupt handler
causes more TBE interrupts until the message has been trznsmitted com-

pletely. In this manner, the background job continues to execute

between loop interrupts.
Four routines are explained next: the GRAB routine, and three in-

terrupt handlers. The words set or clear will be used in conjunction

with hardware, the symbol := will be used to denote the replacement of a

program variable, and curly braces will be surround comments.

22

5.3 Sending Messages

GRAB routine:
set interrupt priority to 2; {enable LPA}
set LOOP DESIRED; {hold token when it arrives}

return;

When the token arrives LOOP AVAILABLE is set.
A LPA interrupt is generated.

LPA interrupt:
clear LOOP DESIRED; {reset interrupt}
set interrupt priority to 4; {enable TBE}
call SEND; {determine address of message}
byte_count:=number of bytes in message
byte_point:=address of message.
Transmit BOM; {start chain of interrupts}
return;

When a character has been sent, a TBE interrupt is generated.

TBE interrupt:
if byte_count = 0 then
set interrupt priority to 0; {done tramsmitting}
set Timer; {wait for acknowledge character to arrive}

else
transmit contents of byte_point; {transmit next character}
byte_count:=byte_count-1; '
byte_point:=byte_point+l;

return;

When the timer times out, a timer interrupt is generated.
The timer is provided by the TU-ART board.

Timer interrupt:
clear LOOP AVAILABLE; {release token}
if acknowledge received then B:=1 else B:=0;

call DONE;
return;

5.4 Receiving Messages

Receiving messages. is more complicated than tfansmitting them,
since each of the characters in the header must be treated differently.
To accomplish this in the loop driver routines, a finite state machine
is simulated. A variable called STATE indicates the’state of the
machine. When a character is received, this state variable is used to

determine how the character is treated.

23

5.4 Receiving Messages

The state ldiagram éhowing the possible state changes is given in
Figure 5.2, The initial statL is zero, indicating that a BOM character
is expected mnext. There are two transitions not shown on the state
diégram: state zero is entered as explained in the next paragraph,i and

state one is entered whenever a BOM is received.

Both overrun and parity errors cause an immediate branch to state
zero and the rest of the message is ignored. An overrun error will
occur if a new character is received before the previous character has
been accepted. The previous character is now lost. A parity error will
occur if some bits are garbled in transmission. In either case, the

message has been adulterated, and is ignored.

ERROR BOM
» WRONG ADDRESS
%% COMMAND BYTE NOT DEFINED

Figure 5.2 — State Diagram

Incoming messages are handled by the BOM and RDA interrupt

handlers.

BOM interrupt handler:
if STATE = 6 then return; {if

already processing message, return}
STATE:=1;
set interrupt priority to 3; {enable RDA}
return;

24

TS

5.4 Receiving Messages

RDA interrupt handler:
dispose of character accordlng to STATE as detailed below
return;

The action of the state machine is described as follows.
State zero - Waiting for BOM.

Receipt of a BOM will cause the BOM interrupt which sets STATE
gqual«to one, and sets the receive interrupt priority to three, so that
charécters can be received.

State ome - Waiting for destinationm.

If the message is not addressed to this computer, and is not being
broadcast, the message is ignored. This is done by returning to state
zero and setting the receive priority back to one. If the message is
addressed to this computer, or is a broadcast, STATE is set to two.
State two - Waiting for command byte.

| The table containing the buffer addresses for each command byte 1is
referenced. If the address has not yet been defined by a call to ADDR,
the message is rejected, otherwise the first byte received (the destina-
tion byte), and the second (the command byte) are stored in the buffer
and STATE is set to three.

States three and four — Waiting for size.

The length is two bytes long. The - first byte is the 1least’
significant, the second is most significant.r The message length in-
dicates the number of data bytes following. They are received by sett-
ing STATE to five. |
State five - Waiting for data.

The routine stays in state five until the‘message is completed.
When thevlast character has been received, STATE is set to six.

State six - Message received.

An ACK character is transmitted to acknowledge the receipt of the

25

5.4 Receiving Messages

message. The RECV routine associated with the command byte of this
message is called. When it returns, STATE is set to zero.

A listing of the loop driver routines is given in Appendix C.

26

6.1 Example of Clarkson Loop Usage

As an example of the use of the Clarkson Loop, a demonstration user
program has been implemented for the Clarkson Loop operating system.
The program, called DISKSIM, simulates multiple disk drives on a éingle
disk drive system. One proceséor, designated the master, useé another
processor”s disk drives. The other processors are termed slaves.

. DISKSIM is useful because multiple disk drives are useful. It 1is
possible, but mnot convenient to copy files from one floppy disk to
another on a single drive system. By simulating two drives, system
routines can be used to copy files, or even a whole disk. The true
beauty of DISKSIM is that nondistributed programs can use it without
modification.

A North Star disk controller can control up to three drives,
therefore to differentiate between the physical floppy disk drives, any

disk access must specify a drive number. The computers used in the loop

each have only one disk drive.

DISKSIM works in conjunction with DOS by overlaying the DOS disk

driver entry point. When a user program calls the disk driver, DISKSIM
is entered.

When DISKSIM gains control, the registers have been ‘1oaded with
parameters for the disk driver routine. One of these parametefs is the
drive number, which is used as an index into MAPTBL. MAPTBL contains
entries for four drive numbers. Drive number one is the drive which is
connected to the master procéssor. Drives two through four are mapped
into processors one through three using a table kept in DISKSIM.

If drive one is accessed, the master processor”s drive is used. If
drives two through four are accessed, messages are transmitted to and

from the slave processor corresponding to that drive number. These

27

6.1 Example of Clarkson Loop Usage

mességes are listed in Figure 6.1. The contents of each of the mesSages
are listed in Table 6.1.

It is easy to see that no modification is necessary to a user pro-
gram in order to use DISKSIM. All that a user program need do 1is to
access the second or third disk drives as if the disk drives were
attached to the master computer.

In or@er to hold buffer space to a minimum, one sector (256 bytes)
is transmitted on the loop at a time. If the disk command requests more
than one sectof to be read or written, a separate message is sent for
each sector.

An Error return message is sent if a hard disk error occurs on
either a read or a write. When the message arrives at the master pro-
cessor, the hard disk error routine is called.

A listing of the routine is given in Appendix D.

Messages sent to read a sector:

Master Slave
Read Request >
either
< Read Return
or
<~ Error Return

Messages sent to write a sector:

Master Slave
Write Data >
either
<= Write Return
or
< Error Return

Figure 6.1 — Message Flow

28

6.1 Exampie of Clarkson Loop Usage

 Five messages can be sent and received:

o Type of message | Contents
Read data | disk address.
Read return | disk data.
Error return | bad track,bad unit,bad sector.
Write data | disk address, sector data.
Write return | none

Table 6.1 ~ Message Contents

29

Conclusions

The interface board was specified, designed, and built by Paul
Austin and the author. Since we were gaining experience in designing

computer interfaces, a number of errors were made. Some of these pre-

vented the operation of the board, and were removed. Others still ex-

isting make usage of the board more inconvenient, but not impossible.

In particular, the board is not initialized at power up. When the
operating system is initialized,‘the interface must also be initialized,
otherwise spurious interrupts will be generated. This problem can be
alleviated by using the power on clear line of the $-100 bus.

When the processor is reset, éxecution resumes at location zero.
The interface uses this locatioq for one of its interrupt addreéses.
Moving all of the interrupts up by one (i.e. making the BOM a restart
one, the LPA a restarf two, etc.) will eliminate the conflict.

There is still one awkward situation remaining with the token.
Whé; the loop is first powered up, the token is started by manually in-
itializing only one processor to have the token; This processor then
releases the tdken without sending a meséage. The token themn travels
normally around the loop. Unfortunately, the token disappears when a
computer is powered down, and must be manually restarted.

In a laboratory environment this problem is not restrictive, as all
the computers in the loop are in the same room. The problem of the lost
token must be solved because it is inconvenient to restart it4 manually
in a practical application. One possibility is to suspend loop activity
when a computer is being turned off. -Another is to never turn computers
off, a practice followed with mainframe computers.

A second distributed processing application has'aiready been de-

veloped by Paul Austin [Austin 1980]. A LISP interpreter was modified

30

Conclusions

to include two functions, write message and read message. LISP

functions were written to distribute the evaluation of LISP sub-

functions.

The Clarkson'Loop is useful any time that data must be transmitted
from one computer to another. Applications include distributed process-—
ing and multiuser programs. If the computers were located some distance
from each other, another possible application might .involve electromnic

mail transmission.

31

References

Austin, Paul R. "Distributed Processing of Applicative Expressions" -
Master”s Thesis, ECE Dept., Clarkson College, Potsdam, N. Y., May
1980 - o ' '

Downer, Gregory '"a Microcomputer Network for Studying Distributed Data
Base Problems" - Master”s Thesis, ECE Dept., Clarkson College,
- Potsdam, N. Y., April 1980

Brinch Hansen, Per "Operating Systems Principles" - Prentice Hall, 1973
INTEL Corporation "MCS80 User”s Manual" - Intel Corporation, Oct. 1977

Liu, Ming T. '"Distributed Loop Computer Networks" - Advances in
Computers, Vol. 17, 1977

Farmer, W. D. and Newhall, E. E. "An Experimental Distributed Switching
System to Handle Bursty Computer Traffic" - Proc. ACM Symposium on
Problems in the Optimization of Data Communication Systems, Pine
Mountain, Georgia, Oct. 1969

Osbourne, Adam "An Introduction to Microcomputers, Volume II, Some Real
Products" - Adam Osbourne and Associates, 1977

Jafari, H., Spragins, J. and Lewis, T. "A New Modular Loop Architecture
for Distributed Computer Systems" - IEEE Trends and Applications in
Distributed Processing, May 1978

Weitzman, Cay "Distributed Micro/Minicomputer Systems" - Prentice-Hall
Inc., Englewood Cliffs, N. J., 1980

32

LBtk
1 TD3

CN TTHLS0H
ci TTHLS0D

+5

5 !xw]ﬂ Ji8];5 4

S@lp :j
- W s
2l

-0

DN
a1

B +5
AS THLS24Y
&) 3 b$7
15 S brb
0 BT NIS |
1 i u](j:‘l DT
1
| 8}3;1 DT3
b}{“* Dj:&z !
4) DIl :
- DT
PINT
T’u%‘rRTg
barsy
G- A

34

IR

- Interface S_»@hema-t ics

1l

w5 Ddatwin befwovt s
vbu ,LM‘ bty
= leu\l”ﬂ"{ " ; '
i m i
KJ ST
Z a1y ’
z pv3
——1 LPA

+lb
+5 H4 TN HS o T
DI \V4 Ay
+5 %4._/}4 HL b9
pra INAY

N

I’
z
=

—

+5
, —— ST 1
b I
Va. Qe
— Yo o g b, Qf
; 4
7 — Rr +5
ouTR Wiy be I
. 5]
IN3 By 5 T4 12 Pliﬂ Y.k
—— §]
ouT CLRY - 4
3 & 14 B b ,OOle
T o5 . }
3; le /\‘ Kﬁ&d
IL} e !!]1:& 13
&

- 35

 Interface Schematricrs

+5
!5’ ’“\ Lo [ig b
! 7
b2 3{>pf Belk 4 7 ETCLK,
. U
(5] oY
74Ls193

cP?‘féP THLSA kb

577

b1 15 Nl
L o—"pte :1
et — .
e~

W\
¥

36

Interface Schematics

o R\D
MIES
+5 5
39 = L_;n W L5 i
bx7
3%
DTl
2] bIS5
- 2 Az T3
3 55 .
M-1015 UART Dl
_— g DT
4
D
= N y
DO7 N3] B RD7 ApN3 DI
DOb 15 g 3_& {] KDIO (S#{? DE/O :
Do ——2 >—2 o s of L s |
' oH TS 30 d_Rby M A DT4
bo3 %ﬁ/j b2 29 B CERRE NG
N b 14 TDA 3 7 Ry e 14 NI
D] Lf}((la Thit 22 b Ry 4 i ! ‘
D K : N |
18 TP 28 5 RDE a 18 —
hop W , % T 3 i ' ¢ hig b_L¢
= i :mgb
poc. “Jﬁ\eﬁo B
oUTg

37

™D

Iﬁterf ace Schematics

i RV U424 BYLCX TH LSAppb
/0(7 N3 o 4
,,i A
f*”/' o
T-—-o/' \3\%

r\L

: ‘. b

= 9 =0
j & ICA 1
ﬁ l
1,9
5ﬂf@ 4 >9,&
e \.
:50 o o> '
Nintan! ISV R =
2 p
E R m el 1%) 15 P 3:7\{ &
R E HLSI5T p——0uT |
AT, THLS MY AV
Ll ourd
bl—— TN @
7

N

38

e e e e

I/0 Interface Routines

s INTERRUPT ROUTINES. REFERENCE: SIMULTANEOUS INPUT
; AND OUTPUT FOR YOUR 8080. BY W.D. MAURER
; IN THE MAY 1979 BYIE.

ABASE
BBASE
Loop
LPDATA
LPSTAT
LPAV
LPULSE
LPABIT
LPORE
TTYST
TTYBR
TTY
TTYCM
TTYIR
- TIMER4
BST
BBR
BTER
BCM
BIR
TBE
RDA
IPG
ORE
BAUD96
BAUD3
RESET

INITS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

5QU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU -

EQU
EQU
EQU
EQU
EQU

MVI
oUT
MVI
ouT
ouT
MVI

OUT.

MVI
OuT
MVI
ouT
MVI
0ouT
MVI
OouT
IN

IN

IN

IN

ouT
MVI

00H

10H

7CH

LOOoP

LOOP+1

LOOP+2 1IN CLEARS LPAV. OUT SETS LPREQ.
LOOP+3 1IN SETS LPAV. OUT CLEARS LPREQ.
0lH ,
10H ’

ABASE

ABASE

ABASE+1

ABASE+2

ABASE+3

ABASE+8

BBASE

BBASE

BBASE+1

BBASE+2

BBASE+3

80H

40H

20H

02H OVERRUN ERROR FLAG BIT.
0con 1 STOP BIT 9600 BAUD
084H 1 STOP BIT 300 BAUD

9 RESET COMMAND

A,80H

ABASE+4

A,RESET GET RESET COMMD

TTYCM

BCM _

A,BAUD96 GET BAUD RATE
TTYBR

A,BAUD3 GET B BAUD

BBR

A,0FFH ALL ONES TO AREG

OFFH ALL. ZERO LEDS

A,074H ENABLE TBE,RDA,SENS-L,TIMER 4
TTYIR FOR PORT A ‘
A,020H ENABLE TBE

BIR FOR PORT B
TTY

TTYIR CLEAR IPG
BIR

LPAV CLEAR LOOP GRAB
LPULSE CLFAR LOOP REQUEST
A,l ALLOW RECELVES.

39

STA
MVI
STA
CALL
LXI
LOOP
MVI
INX
END
XRA
STA
MVI
STA
CALL
EI
RET

FLUSH

PUSH

LXI
SHLD

SHLD

LXI
SHLD
SHLD

POP

XRA

STA

- STA
STA

" RET

CHINS
PUSH
IFE
LHLD
DO
LDA
CMP
END
MOV
PUSH
XRA
STA
CALL
SHLD
POP
END
IFE
LHLD
LDA
SUB
END
— END
END
POP
RET

1/0 Interface Routines

RXPRI

A,0

TXPRI

SETPRI

H,RECTAB

B, MAXREC+MAXREC+MAXREC+MAXREC
M,0

H

LOOP

A SET TXBUSY TO FALSE
TXBUSY

A0

STATE

FLUSH

H

H,BIQ CLFAR INPUT QUEUE
FIQ

EIQ

H,B0Q CLEAR OUTPUT QUEUE
FOQ

EOQ

H

A NOT TYPING CHARACTERS, AND
TBESET

INPFULL INPUT NOT FULL

STOP NOT STOPPED

NZ WAIT FOR Q NOT EMPTY

AM GET CHAR

A . CLEAR STOP

40

CHOUTS

CCONTS$
s VALUES
;3 0
|
; 2
;3 3

RST4

PUSH
LHLD
MOV
CALL
DO
LDA
CMP
END
SHLD
DI
LXI
MOV
MVI
ORA
IF

CALL
_END

EI

POP
MOV
RET

I/0 Interface Routines

H

EOQ

M,B

sUCCo

NZ WAIT FOR EMPTY SLOT IN Q
FOQ

H,T

AM TEST AND SET.
M,1

A

Z IF ZERO NOW, Q IS EMPTY.

OF STOP AND THEIR MEANING:

CONTINUE PRINTING NORMALLY

WAIT FOR STOP TO CHANGE

STOP LISTING. .

STOP LISTING AND CLEAR BUFFERS.

sWAIT FOR HIM TO TYPE ANOTHER “S OR “C (WHICH CLEARS STOP)

DO
LDA
CPI

END

Cr1

JZ

IF
XRA
STA

END

RET

EI
PUSH
IN
ANI
IFE
LDA
XRI
STA
END
PUSH
IFE
MVI
STA

NZ
STOP
1

DO

3

- FLUSH IF HE TYPED "“C, ALSO CLEAR BUFFERS.

=’2
A
STOP
IF.

P

TTY A:=INP(TTY) AND 7FH

7FH

=, 8" -40H IF CHAR="S THEN

STOP FLIP STOP FROM 0 TO 1 OR 1 TO 0
1

STOP

THEN

P .

=,”C”-40H IF CONTROL C,

A,3 SET STOP TO CLEAR BUFFERS AND STOP
STOP S

41

s

RDASTOR

RST5

END
LDA
IF

MVI
STA
END

END

IN

ANT

IF
MVI
CALL

END

POP

CALL

END
POP
RET

PUSH
LHLD
MOV
CALL
LDA
CMP
IFE
SHL.D
END
LXI
INR
LDA
ORA
IF
DCR
MVI
ouT
END
END
POP
RET

PUSH
PUSH
LXI
MOV
ORA
IFE
DCR
MVI
0UT
END
LHLD
LDA
CMP
IFE

I/0 Interface Routines

THEN
STOP IF WAITING FOR STOP,
=1 SET STOP TO 2

A2

STOP

IF

ELSE

‘TTYST

ORE OVERRUN ERROR?

NZ

A,7?% ~ YES - STORE A QUESTION MARK.
RDASTOR ‘

IF
P
RDASTOR
ELSE~CTRL S
P
H
EIQ STORE CHAR
M,A ,
SUCCI
FIQ IF FIQ<>L THEN EIQ=HL
L
NZ IF NOT FULL,
EIQ UPDATE POLNTER
THEN ELSE IF FULL, ,
H,INPFULL SCHEDULE A BELL TO BE TYPED.
M
TBESET IS A CHARACTER BEING PRINTED
A OR SHOULD WE START ONE NOW?
z IF TBESET=FALSE, PRINT IT NOW.
M AND DESCHEDULE THE BELL.
A,”G"-40H
TTY
IF
ELSE
H
P
H
H,INPFULL

CAM ~
A
NZ IF ANY BELLS TO TYPE,
M DECR COUNT
A,”G"-40H
TTY
THEN
FOQ TEST AMOUNT OF DATA IN QUEUE
EOQ
L :
NZ IF NOT EMPTY,

42

SUCCI

SUCCo

MoV
ouT
CALL
SHLD
END
XRA
STA
END
END
POP
POP
EI
RET

INX
MOV
CP1
RNZ
LXI
RET

INX
MOV
CPL
RNZ
LXI
RET

END

I/0 Interface Routines

AM OUTPUT CHARACTER

TTY INTERRUPTS MUST BE TURNED OFF HERE,
sUCCo OTHERWISE, THE SAME CHAR MAY BE
FOQ TYPED TWICE.

THEN '

A IF EMPTY, CLEAR TBESET

TBESET

ELSE~ .
ELSE

H

P

H INC HL
A,L
BIQ+LIQ, >
RETURN IF L<>END OF INPUT Q
H,BIQ

H
A,L
BOQ+LOQ, >

H,BOQ

43

Loop Handlers

;INTERRUPT FOR LOOP AVAILABLE
RSTI1
PUSH
PUSH
PUSH
PUSH
oUT LPULSE CLEAR INTERRUPT REQUEST.
CALL SEND
LDA THISADR ARE WE SENDING IT TO
CMP M OURSELVES?
IFE z
INX H
MOV A,M GET THE COMMAND BYTE
PUSH H
CALL RECTADR GET RECTAB ADDRESS
IF NC
CALL GET2 LOAD DE WITH THE ADDR
XCHG OF RECEIVE PROCESSING ROUTINE.
SHLD RXPROC
XCHG
CALL GET2
POP H
MOV A,D WE CAN RECEIVE THIS MESSAGE ONLY IF
ORA WE CALLED ADDR FIRST.
IF
- INX
MOV
INX
MOV
DCX
DCX
DCX
CINX
INX
INX
INX
DO
MOV A,M
INX H
STAX D
INX D
DCX B
MOV A,B
ORA C
END DO
MVI A,0 RESET TXPRI
STA TXPRI
CALL SETPRIOUT
XRA A CLEAR TXBUSY
STA TXBUSY
— IN LPAV . RELEASE LOOP
'EI
MVI B,1 TELL HIM HIS MESSAGE IS SENT,
LHLD DONEADR

HOoO W

N

GET THE SIZE

=

=

ADD FOUR TO IT.

NWwwewmEHODHODwiEHo@=o

44

Loop Handlers

CALL INDIRECT
CALL RECV AND PROCESS 1IT.

END
END
END -
SHLD
MOV
STA
INX
INX
CALL
XCHG
INX
INX
INX
- INX
SHLD
MVI
ouT
XRA
STA
MVI
STA
END
CALL
POP
POP
POP
POP
EI
RET

IF
IF

THEN

TXPTR

AM

TXDEST

H

H SET TXCNT
GET2

H ADD FOUR TO IT.

H . .

H . .

H . .

TXCNT

A, BOMCHR SEND BOM
LPDATA

A MAKE SURE NOT ESC OR BOMCHR
LASTCHR :
AL ALLOW LPTBE”S.

TXPRI

ELSE

SETPRI

H

D
B
P

sINTERRUPT FOR LOOP TRANSMITTER BUFFER EMPTY.

RST3

RST3DO

PUSH
PUSH
PUSH
PUSH
CALL
CALL
pPoP
POP
POP
POP
EI

 RET

LDA
IFE
MVI
END
IF
MVI
END
END
IFE

Y w g

RST3DO TYPE NEXT CHAR, IF ANY LEFT.
SETPRI

WUw oo

LASTCHR

=,ESC

A,FESC

THEN

=, BOMCHR

A,FBOMCHR

IF

ELSE

z IF ONE OF THE ABOVE, TRANSMIT

45

RST6

- OUT
XRA
STA

END
LHLD
MOV
ORA
IFE

DO
IN
ANI

END

MVI

STA

MVI

ouT
END

DCX

SHLD

LHLD

MOV

INX

STA

SHLD

IF
MVI

END

ouT
END
END
RET

PUSH
PUSH
PUSH
PUSH
MVI
IN
LDA
IF
IN
ANT
IF
IN
END

" IF

MVI

END
END
EI
XRA
STA
LHLD
CALL
POP
POP

Lbop Handlers

LPDATA IT NOW.

A MAKE SURE LASTCHR IS NOT
LASTCHR BOMCHR OR ESC.

THEN

TXCNT

AH

by

Z

NZ WAIT FOR LAST CHAR TO BE TRANSMITTED
LPSTAT

02H

DO

A0

TXPRI

A, TIMEOUT

TIMER4

THEN

H DECREMENT TXCNT

TXCNT

TXPTR

AM

H GET NEXT CHAR

LASTCHR

TXPTR

=, BOMCHR BOMCHR GETS CONVERTED
A,ESC TO ESC,FBOMCHR, AND ESC BECOMES
IF ESC,FESC.

LPDATA SEND IT

ELSE

ELSE

oo wH

B,1 ASSUME IT WAS SENT.

LPAV RELEASE LOOP

TXDEST EXPECT ACKNOWLEDGE ONLY
<>,0 IF NOT BROADCAST.
LPSTAT 1IF A CHARACTER WAS INPUT,
40H

NZ

LPDATA INPUT IT.

IF

<>,” 7 IF IT”S NOT A BLANK,

'B,0 IT WASN’T RECEIVED.

IF
IF

A

TXBUSY
DONEADR
INDIRECT
H

D

46

GRAB

SEND

ADDR

POP
PoOP
EI

RET

DO

LDA -

ORA
END
INR
STA
SHLD
XCHG
SHLD
MVI
STA
CALL
oUT
RET

LHLD
PCHL

PUSH
CALL
RC
CALL
POP
CALL
LDA
RET

Z
TXBUSY
A

DO

A
TXBUSY
DONEADR

SENDADR
A,2
TXPRI
SETPRI
LPAV

SENDADR

H
RECTADR

PUT2
D
PUT2

- THISADR

Loop Handlers

ALLOW LPA”S

HOLD TOKEN NEXT TIME IT GETS HERE.

;FORM INDEX INTO RECTAB. ENTER WITH A=COMMAND BYTE,
; EXIT WITH HL=>PROPER ENTRY AND CY=0, OR CY=1 IF COMMAND

; OUT OF RANGE.

RECTADR

CP1
CMC
RC
ADD
ADD
LXI
CALL

'RET

MAXREC

A
A

ADD2

H,RECTAB

;INTERRUPT FOR BEGINNING OF MESSAGE

RSTO

PUSH
PUSH
PUSH
PUSH
IN
LDA
IF

mnY wd

LPDATA
STATE
<> ,-1

CLEAR INTERRUPT
ARE WE ALREADY PROCESSING MESSAGE?

47

Loop Handlers

CALL NEXTSTATE NO, GO TO STATE ONE.
MVI A,3 ALLOW LPRDA”S
STA RXPRI

END IF

CALL SETPRI

POP H

POP D

POP B

POP P

EI)

RET

s INTERRUPT FOR SENSE A AND LOOP RECEIVER BUFFER FULL
RST2

PUSH P

PUSH B

PUSH D

PUSH H .

IN BST GET B-STATUS

ANI IPG

IFE NZ
CALL RST2TU

END THEN
CALL RST2LP

END ELSE

POP H

POP D

POP B

POP P

EI

RET

RST2TU
IN BIR GET INTERRUPT ADDRESS
RET ‘
RST2LP

IN LPDATA CLEAR INTERRUPT REQUEST.

MOV B,A SAVE INPUT BYTE.

LDA STATE IF WE'RE IN STATE ZERO, WE

IF <>,0 SHOULDN”T RECEIVE THIS.
CALL LPCHIN PROCESS THIS CHAR.
IFE NZ IF LPCHIN RETURNS Z=0,
CALL ENDRDA STOP RECEIVING. MESSAGE
END THEN
LDA STATE IF MESSAGE COMPLETE,
IF =,6

s ;-

LDA RXDEST WAS THIS NOT A BROADCAST?
IF - <,0 IF NOT BROADCAST,
MVI A,” ~ SEND A CHAR.

OUT LPDATA

END IF
MVI A,~-1 REMEMBER THAT WE'RE
STA STATE PROCESSING A MESSAGE
MVI A,l

STA RXPRI

CALL SETPRI

48

Loop Handlers

EI ‘
CALL RECV AND PROCESS MESSAGE.
CALL ENDRDA

END IF
END ELSE
END IF
CALL SETPRI
RET"
DCOMS$
PUSH P
MVI A,0
CALL SETPRIOUT
POP P
CALL DCOMS$
CALL STRTMSG
RET
RECV
. LHLD RXPROC
INDIRECT
PCHL.
ENDRDA
MVI A,l
STA RXPRI
MVI A,0
STA STATE
RET

sFIGURE OUT WHAT TO DO WITH THE CHARACTER WE JUST RECEIVED.
sTHE CHAR IS IN THE B-REG.

LPCHIN :
MOV A,B
IF =,ESC
LDA STATE
ORI 80H
STA STATE
XRA A RETURN Z=1
RET
END IF
LDA STATE TEST STATES.
ANI 80H
IF NZ
LDA STATE
ANI 7FH
STA STATE
MOV A,B
IFE =,FBOMCHR
MVI B, BOMCHR
END THEN
IF =,FESC
MVI B,ESC
END = IF
END ELSE
END IF
LDA STATE BRANCH TO STATES 1,2,3,4,5

49

Loop Handlers

DCR A
‘ Jz LPCHINL
/“\ DCR A
JZ LPCHIN2
DCR A :
JZ ~ LPCHIN3
DCR A
JZ LPCHINA
DCR A
JZ LPCHIN5S
JMP $ TRAP BAD STATES.
;ACCEPT DESTINATION.
LPCHIN1 -
CALL RXCHECK MAKE SURE CHARACTER IS OK.
RNZ
MOV A,B ARE WE BEING BROADCAST TO?
IF <>,0 NO -
LDA THISADR MAKE SURE IT”S FOR US,
IF <>,0 BUT ONLY IF WE“RE NOT EAVESDROPPING
CMP B
END IF
END 1IF
RNZ IF NOT EQUAL, IT”S NOT FOR US.
STA RXDEST =0 IF BROADCASTING OR EAVESDROPPING.
CALL NEXTSTATE ELSE GO TO STATE 2
XRA A RETURN OK. o
RET
a ;ACCEPT COMMAND BYTE
LPCHIN2 :
MOV A,B
CALL RECTADR
IF c
ORI 1 MAKE SURE NOT ZERO (Z=0)
RET
END IF
- CALL GET2
MOV A,D - IF ENTRY IN RECTAB IS ZERO,
ORA E WE CAN’T RECEIVE THIS MESSAGE.
IF Z :
INR A A IS NOW NOT ZERO, HENCE Z=0.
RET
END 1F .
XCHG
SHLD RXPROC
XCHG
CALL GET2
XCHG
SHLD RXPTR
CALL NEXTSTATE
MOV C,B
LDA RXDEST
MOV B,A
o~ CALL RXSTOR
" RNZ
MOV B,C

CALL RXSTOR

50

s

RET

Loop Handlers

;ACCEPT SIZE LOW

LPCHIN3
MOV
STA
CALL
CALL
RET

A,B

RXCNT
NEXTSTATE
RXSTOR

3ACCEPT SIZE HIGH

LPCHINA
MOV
STA
CALL
LHLD
JMP

A,B
RXCNT+1
NEXTSTATE
RXCNT

LPCHIN5.1 TEST FOR SIZE=0.

;ACCEPT DATA BYTES.
sGOES TO NEXT STATE WHEN ALL DATA HAS BEEN RECEIVED.

LPCHINS
LHLD
DCX
SHLD

LPCHINS5.1
MOV
ORA
Ccz

3 CALL

5 RET

RXSTOR ,
CALL
RNZ
PUSH
LHLD
MOV

INX

SHLD
POP

RXCNT
H

"RXCNT

A,H
L
NEXTSTATE
RXSTOR

RXCHECK
FATAL TO MESSAGE IF NOT ZERO.
H STORE INPUT CHARACTER
RXPTR
M,B
0
RXPTR
H

;BE SURE TO RETURN Z=1 SO THAT WE CONTINUE RECEIVING

RET

sRETURN NZ IF CHARACTER NOT OK.

'RXCHECK

i IN
ANI
RET

NEXTSTATE
' LDA
INR
STA
RET

SETPRI
) PUSH
LXI
LDA

LPSTAT CHECK ERROR FLAGS.
LPORE

STATE

STATE

H,RXPRI
TXPRI

51

Loop Handlers

iF < IF TXPRI < RXPRI,
MOV - A,M USE RXPRI
END IF
POP H
STA LASTPRI
SETPRIOUT
OUT LPSTAT
CMA
OUT OFFH
RET
STOPMSG
PUSH P
WHIL NZ WAIT FOR MESSAGE SILENCE
DI
LDA TXPRI
IF =,0
LDA STATE
ORA A
END IF
END COND
EI
END WHILE ,
MVI A,0 DON’T ALLOW MESSAGES
CALL SETPRIOUT
EI
POP P
RET
STRTMSG
PUSH P SAVE FLAGS
LDA LASTPRI
CALL - SETPRIOUT
POP P " RESTORE FLAGS
RET
THISADR EQU 3FH
BOMCHR EQU “B”-40H
FBOMCHR EQU ‘B’
ESC EQU “[“-40H
FESC - EQU I
TIMEOUT EQU 36 APPROX EQU TO 2 CHAR TIMES. (2.3MS)
LAST EQU $
ORG ' 2A00H-24-12
FREE , EQU $-LAST
JMP .~ STOPMSG
JMP STRTMSG
JMP GRAB
JMP ADDR
JMP RSTO
Jvp RST1
JMP RST2
JMP RST3

52

i

MAXREC

RECTAB

LIQ
LOQ

FIQ
EIQ
FOQ
EOQ
TBESET
STOP

RXPTR
RXCNT
RXPRI
STATE
RXDEST
RXPROC

TXBUSY
TXPTR
TXCNT
TXPRI
TXDEST
LASTCHR
SENDADR
DONEADR

LASTPRI
DCOMSSA

INPFULL
FRSTFRE
FNAME

UNIT
LLFLAG
LASTDIR

MAXSCT

'INSIZE

INBUF

INPTR
STADR

CR
LF

JMP
JMP

- JMP

JMP

EQU

DS

EQU
EQU

DS
DS
DS
DS
DS
DS

DS

DS
DS
DS
DS
DS

DS
DS
DS
DS
DS
DS
DS
DS

DS
DS

DS
DS

DS
DS

DS

DS
EQU
EQU
DS
DS
DS

EQU
EQU

Loop Handlers

RST4
RST5
RST6

6 MAXIMUM NUMBER OF COMMAND BYTES.

MAXREC+MAXREC+MAXREC+MAXREC

NN

N k= == NN

- NN b= = NN

N =

8
1
1 : .
2 LAST DIRECTORY SECTOR READ.
350 .

40

INSIZE

2

2

0DH

OAH

53

BIQ DS
- . BOQ DS
DS
STACK
SAVSTK DS
DIRBUF DS
FREE2 EQU
END

LIQ
LOQ

~100

Loop Handlers

54

DISKSIM

3 THE PURPOSE OF THIS MODULE IS TO PROVIDE SIMULATED

3sDISKS ON THE DISTRIBUTED LOOP SYSTEM.

;DOS, DISKS ARE REFFERED TO BY UNIT.
;A DISK UNIT MAY BE REASSIGNED TO A PHYSICAL DRIVE ON
;A DIFFERENT COMPUTER.
3 WHEN A CALL IS MADE TO DCOM, IT GOES, NOT TO THE DCOM

IF THE LOGICAL UNIT IS PHYSICALLY
;RESIDENT IN THIS SYSTEM, IT IS EXECUTED LOCALLY, ELSE IT IS SENT
sTO A DIFFERENT COMPUTER.

sROUTINE, BUT TO THIS ROUTINE.

;REQUESTED SEPERATELY.

IN THE NORTH STAR
IN THE LOOP DOS,

EACH SECTOR IN THE REQUEST IS
THE INFORMATION NECESSARY TO READ A SECTOR

;IS: THE DISK ADDRESS, AND TO WRITE A SECTOR: THE DISK ADDRESS,

;AND A SECTOR”S WORTH OF DATA.

sINITIALIZE FOR READING.

CALL
STA
LHLD
LXI
CALL
‘RZ
SHLD
LXI
SHLD

ALLOWRECV
LXI
LXI
MVI
CALL
LXI
LXI
MVI
CALL
LXI
LXI
MVI
CALL
LXI
LXI
MVL
CALL
LXI
LXI
MVI
CALL
RET

DCOML
PUSH
PUSH
MOV
LXI
CALL
MOV

ALLOWRECV
THISADR
2023H

GET THE PHYSICAL DCOM ADDRESS

D,DCOML IF IT”S ALREADY SET TO OUR ROUTINE,

DCMP

DON’T SET IT AGAIN.

DCOMA

H,DCOML AND SUBSTITUTE THE LOGICAL DCOM ADDR.

2023H

D,READDATA
H,RDBUFF
A,RDCMD
ADDR
D,READRET
H,RRBUFF
A,RRCMD
ADDR
D,ERROR
H,ERBUFF
A,ERCMD
ADDR
D,WRITEDATA
H,WDBUFF
A,WDCMD
ADDR
D,WRITERET
H,WRBUFF
A,WRCMD
ADDR

SAVE THE SECTOR COUNT

P
H AND THE DISK ADDRESS.
A,C FIND OUT THE PHYSICAL ASSIGNMENT

H,PHYS

ADD2
AM

55

POP H
ORA A IF IT’S ZERO, IT”S ALREADY PHYSICAL.
2 JZ ALLPHYS
;THE NUMBER IN A IS THE NUMBER OF THE COMPUTER WHICH OWNS THE DISK.
STA DESTIN o
MOV A,B - GET COMMAND (ONLY READ OR WRITE)
ORA A WRITE IS ZERO. ’
JZ WRITE
POP P
WHIL NZ READ LOOP
ORA A
END COND
; DEBUG /READ
PUSH P SAVE SECTOR COUNT
SHLD RDBUFF+5
PUSH H
LXI H,RDLEN
SHLD RDBUFF+2
PUSH D \
XCHG GET MEMORY ADDRESS
SHLD MEMADR
MVI B, RDCMD
LXI H,RDBUFF
CALL TRANSFER
POP D GET MEM ADDRESS
INR D INC BY 100H.
POP H
INX - H
7 POP P
DCR A
END WHILE
RET
WRITE
: POP P
WHIL NZ WRITE LOOP.
. ORA A
) END COND
: DEBUG /WRITE
PUSH P SAVE SECTOR COUNT
SHLD WDBUFF+5
PUSH H
PUSH D ,
LXI H,WDLEN SET THE SIZE
SHLD WDBUFF+2
LXI H,WDBUFF+7 :
CALL MOVESCT MOVE THE SECTOR TO THE BUFFER.
MVI B, WDCMD
LXI H,WDBUFF
CALL TRANSFER
POP D GET MEM ADDRESS
INR D INC BY 100H.
POP H
— INX H
POP P
DCR A
END WHILE

DISKSIM

DISKSIM

RET

yPHYSICAL DISK.
ALLPHYS
POP P
JMP DCOM

3SEND A MESSAGE AND WAIT FOR IT”S RESPONSE TO COME BACK.
sENTER WITH HL=> THE BUFFER TO SEND.

TRANSFER
LDA DESTIN
MOV M,A
MVI A,0
STA FLAG
PUSH H
INX H
INX H
INX H
INX H
LDA THISADR
MOV M,A
POP H
CALL GRABBER
DO NZ
LDA FLAG
ORA A
END DO
RP - RETURN IF OK.
LXI H,ERBUFF+4
MOV B,M
INX H
MOV C,M
INX H
MOV D,M
CALL HDERPR
JMP - HDERI

sSEND A MESSAGE.

GRABBER :
SHLD BUFADR
INX H
MOV M,B
MOV A,B
; DEBUG /GRAB
LXI D, SEND
LXI H,DONE
CALL GRAB
RET
SEND
LHLD BUFADR
RET
 DONE
MOV A,B
IF <,1

LHLD BUFADR

57

DISKSIM

INX H
MOV B,M
a DCX H
CALL GRABBER
END IF
RET
READDATA
; DEBUG /READDATA
;SWITCH TO OUR STACK
LXI " H,0
DAD S
SHLD STACK
LXI S,STACK
LDA RDBUFF +4
STA RDBUFF
MVI A,l
LXI B,11 DO IT TO UNIT ONE.
LHLD RDBUFF+5 "~ DISK ADDR.
LXI D,RDBUFF+4
CALL DCOM
LDA RDBUFF
JC HDERL
LXI H,RRLEN
SHLD RDBUFF +2
LXI H,RDBUFF
MVI B,RRCMD
JMP READDATA1
- WRITEDATA
: DEBUG /WRITEDATA
;SWITCH TO OUR STACK
CLXI H,0
DAD S
SHLD STACK
LXI S,STACK
MVI A,l
LXI B,01 DO IT TO UNIT ONE.
LHLD WDBUFF +5 DISK ADDR.
LXI D,WDBUFF+7
CALL DCOM
LDA WDBUFF +4
JC HDERL
STA WDBUFF
LXI H,WRLEN
SHLD WDBUFF+2
MVI B, WRCMD
LXI H,WDBUFF
JMP READDATA1
HDERL
; DEBUG /HDERL
STA ERBUFF
LXI H,ERBUFF+4
MOV M,B SAVE TRACK
— INX H
MOV M,C SAVE UNIT
INX H
MOV M,D SAVE SECTOR

58

DISKSIM

LXI H,ERLEN
SHLD ERBUFF+2
MVI B,ERCMD
LXI H,ERBUFF

;RESTORE HIS STACK.

READDATAL

: XCHG :

LHLD STACK
SPHL
XCHG
CALL GRABBER
RET

ERROR

: DEBUG /ERROR
MVI A,-1 ERROR!
STA FLAG
RET

READRET

: DEBUG /READRET
MVI A,l TELL THAT DATA HAS BEEN RETURNED.
STA FLAG '
LHLD MEMADR DISPOSE OF THE BUFFER BY MOVING
LXI D,RRBUFF+4 IT TO IT”S DESTINATION ADDR.
CALL MOVESCT :
RET

WRITERET

; ' DEBUG /WRITERET"
MVI A,l
STA FLAG
RET

;SIMULATE A NORMAL, CALL TO DCOM.

DCOM
PUSH H
LHLD DCOMA GET PHYSICAL DCOM ADDRESS
XTHL : ,
RET JUMP TO IT WITHOUT CHANGING HL.

- ;MOVESCT MOVES A SECTOR FROM DE TO HL, INCREMENTING BOTH BY 256.
MOVESCT :

PUSH

LOOP
LDAX
INX

B
B,0
D
D
MOV~ M,A
H
L
B

~INX
END
POP
RET

oorp

3HL : =HL+A

ADD2
ADD L
MOV . L,A

59

DISKSIM

RNC
INR H
RET

;CY=1 IF DE<HL. Z=1 IF DE=HL.

- DCMP
MOV A,D
CMP H
RNZ
MOV A,E
CMP L
RET
GRAB EQU 29E2H
ADDR EQU 29E5H
HDERl EQU 202CH
HDERPR EQU 202FH
DCOMA DS 2 ADDRESS OF PHYSICAL DCOM.
MEMADR DS 2 :
BUFADR DS 2
DESTIN DS 1 OWNER OF DISK DRIVE.
FLAG DS 1 FLAG, TRUE WHEN ACK MESSAGE RECEIVED.
THISADR DS 1 ADDRESS OF THIS COMPUTER.
DRIVES EQU 2 NUMBER OF LOGICAL DRIVES
PHYS DB 0
DB 0
DB 1
DB 2
DB 3
DB 4
DS 60
STACK 4
DS 2 USED TO HOLD HIS STACK POINTER.

sFIVE MESSAGES CAN BE SENT AND RECEIVED:

RDCMD EQU 0
;s READ DATA: DISK ADDRESS.
RRCMD EQU 1
3 READ RETURN: DISK DATA.
ERCMD EQU - 2 :
; ERROR RETURN: BAD TRACK,BAD UNIT,BAD SECTOR.
WDCMD EQU 3
; WRITE DATA: DISK ADDRESS, SECTOR DATA.
WRCMD EQU 4
; WRITE RETURN: .
RDLEN EQU 3
RRLEN EQU 256
ERLEN EQU 3
WDLEN EQU 1+2+256
' WRLEN EQU 0
RDBUFF
DS RRLEN+4
RRBUFF

60

ERBUFF
WDBUFF
WRBUFF

ENDRAM

DS

DS

DS

DS

END

RRLEN+4

"ERLEN+4

WDLEN+4

WRLEN+4

DISKSIM

61

